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Summary:  In human societies diverse people act purposively with powerful but
limited cognitive processes, interacting directly with one another through techno-
logically-facilitated and physically-mediated social networks. Agent-based com-
putational modeling takes these features of humanity—behavioral heterogeneity,
bounded rationality, network interactions—at face value, using modern object-
oriented programming techniques to create agent populations that have a high de-
gree of verisimilitude with actual populations. This contrasts with mathematical
social science, where fantastic assumptions render models so cartoon-like as to
beg credibility—stipulations like identical agents (or a single ‘representative’
agent), omniscient agents (who accurately speculate about other agents), Nash
equilibrium (macro-equilibrium arising from agent-level equilibrium) and even
the denial of direct agent-agent interaction (as in general equilibrium theory,
where individuals interact only with a metaphorical auctioneer). There is a close
connection between agent computing in the positive social sciences and distrib-
uted computation in computer science, in which individual processors have het-
erogeneous information that they compute with and then communicate to other
processors. Successful distributed computation yields coherent computation across
processors. When such distributed computations are executed by distinct software
objects instead of physical processors we have distributed artificial intelligence.
When the actions of each object can be interpreted as in its ‘self interest’ we then
have multi-agent systems, an emerging sub-field of computer science. Viewing
human society as a large-scale distributed system for the production of individual
welfare leads naturally to agent computing. Indeed, it is argued that agents are the
only way for social scientists to effectively harness exponential growth in compu-
tational capabilities.
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1 Introduction: The Economy as a Distributed System

Consider the following social situation. There are a large number of individuals
interacting through their regular social networks, each engaged in purposive (i.e.,
self-interested) behavior. The network connects each of the individuals to at least
a few others, but no one is connected to all others. The individuals receive peri-
odic communication from those with whom they are connected, but there may be
significant delays in the transmission of such messages. Each individual is capable
of reasoning about and acting on the information it receives, but no agent can
build a complete internal model of all other individuals, nor forecast the exact na-
ture of the messages it will receive in the future. Overall, at the group or popula-
tion level, the myriad actions by the many individuals accrete into macro-level ac-
tivities that may be meaningful in and of themselves, such as when the individuals
engage in collective action. Macro-level activity then feeds back to the individu-
als, causing each of them to adjust its behavior in  some way.

Written at such a high level of abstraction, this 'social situation' has many inter-
pretations. It might represent the internal workings of a firm, where the individu-
als are workers who communicate information on the progress of production or
the design of next year's product. In this case the result of all the individual actions
are goods having economic value. If such products bring handsome sums in the
marketplace then the workers may not alter their behavior in any significant way
in subsequent periods. Alternatively, if the products find few buyers then the
workers will use such feedback to modify their activity or else perish economi-
cally. In a different interpreation, the interacting individuals might represent a
market, where objects are being traded between the agents, each of whom has
some forecast for how the market will unfold over the short or long run. Each in-
dividual may have somewhat different information on which it bases its predic-
tion, and one role of the market qua market is to aggregate these diverse forecasts
to come up with a clearing price, i.e., a price at which no individual wishes to en-
gage in further trade. Or not—it may be that there are a number of so-called tech-
nical traders (sometimes called noise traders) in the market who believe—maybe
erroneously, maybe not—that certain patterns in prices exist and can be exploited.
The existence of such traders may so corrupt the price aggregation function of the
market that the actual prices emanating from it deviate significantly from infor-
mation aggregation (‘efficient markets’) prices.

Although I have called the abstract situation above 'social,' it need not involve
humans, nor any form of biological life for that matter. At the very generic level
described above the interacting individuals could just as well be interacting com-
puters, inter-connected on a network, each perhaps with an explicit task to per-
form, contingent on the receipt of data. Overall, at the level of the whole network,
the computers may be generating new and novel results, this despite the fact that
no single computer has any information on the global goal. Of course, it could be
that global information is made available to the individual processors, and this al-
ters their behavior subsequently. It is easy to imagine that this macro-level infor-
mation may either improve or degrade the performance of the individuals.



The main point of this interpretive exercise has been to suggest that there is a
close relation between the modern conception of distributed computation, on the
one hand, and economics specifically, and social science generally, on the other.

Recent papers by computer scientists argue for interpreting "Computation as
Economics" (Huberman and Hogg 1995, Huberman 1998). These papers describe
a variety of uses of economic ideas within computer science (CS), primarily
within the sub-fields of artificial intelligence (AI) that have come to be known as
distributed artificial intelligence (DAI) and multi-agent systems (MAS). While
there is, undeniably, increasing use made of economic principles within CS, the
core of CS has little or nothing to do with economics. Automata theory, databases,
programming, algorithms, these are the central ideas of the CS curriculum today
and a typical undergraduate student will wade through these disparate topics and
never encounter economics in any significant way.1 Indeed, CS today is much
closer to engineering than to economics, even with respect to its intrinsic notion of
efficiency. That is, computational efficiency refers to the number of operations
needed to arrive at a satisfactory answer, with efficient algorithms requiring fewer
operations, much as an efficient steam engine is one that makes effective use of its
fuel. These notions of efficiency are utterly unlike economic efficiency, which by
convention means Pareto efficiency and refers to the welfare effects of rearranging
economic resources between agents within an economy.

Here we shall espouse the reverse of Huberman, and argue that there are im-
portant ways in which it is meaningful to speak of "Economics as Computation"
and more generally of social science as a form of computer science. That is, there
are principles from CS, especially in the areas of (1) distributed computation
(Barbosa 1996), (2) object-oriented programming (OOP), and (3) multi-agent
systems (Weiss 1999), that provide a solid foundation upon which a modern sci-
ence of economics can be built.2  For such computational tools provide the tech-
nology for relaxing the unrealistic assumptions of the reigning neoclassical syn-
thesis, through the use of recent advances in computing.

This paper, then, is an implicit argument for the sufficiency of the multi-agent
approach: modern computing is sufficient for the creation of a more powerful so-
cial science. A further thesis is necessity, that the only feasible way to harness
modern computer technology for progress in the positive social sciences is to util-
ize multi-agent systems technology in the creation of models capable of repro-
ducing social phenomena. Such model building efforts are at the heart of scientific
explanation, as typified by Cartwright (1983): “To explain a phenomenon is to

                                                            
1  For example, within AI the text of Winston (1992) makes essentially no mention of eco-

nomics, although the more recent introduction to the subject by Russell and Norvig
(1994) does emphasize the 'agent' as the principal unit of analysis, and so takes on a more
game theoretic flavor.

2  It is also possible to situate economics within the formal theory of computation (cf. Ve-
lupillai 2000), although I agree with Simon (1978) who long ago noted that computa-
tional complexity considerations seem more relevant to economic theory than automata-
theoretic ones.



find a model that fits it into the basic framework of the theory and thus allows us
to derive analogues for the messy and complicated phenomenological laws which
are true of it…[T]he success of the model depends on how much and how pre-
cisely it can replicate what goes on.”

2 The Computational Architecture of Economies

Human societies consist of diverse individuals, each with significant but bounded
cognitive capabilities, distributed over space and within social networks, who in-
teract directly with one another and with naturally-occurring and man-made ob-
jects. These individuals are essentially purposive in their actions, behaving in
neither perfectly rational nor completely random ways. They act in their own self-
interest and in accord with group norms and conventions.3  Each individual accu-
mulates over its lifetime significant knowledge concerning both  the natural and
social worlds. Important aspects of overall societal knowledge is held in common
and collected in books and other media that can outlive individuals. But signifi-
cant portions of the sum total of humanity’s wisdom is not socially stored and is
only imperfectly communicated, because it is both highly distributed and tacit in
character (Hayek 1937, Polanyi 1958).

Societies function through the ongoing, decentralized interactions of physically
heterogeneous and cognitively diverse individuals. Each person is more or less
adaptive, never fully-optimizing, gleaning data from its environment and experi-
menting with alternative actions in order to inductively determine how to behave
in new or unusual situations. Each person builds mental models both of its physi-
cal surroundings and the individuals with whom it interacts. These mental models
often have a causal and dynamic character, e.g., ‘if I do this then person X will
think that.’ In essence, people conduct mental simulations of their worlds (Davies
and Stone, 1995). The data used in such mental models is always more or less out
of date, such as when one bases an action purely on past interactions and has no
way to determine whether the arrival of new information has altered the behavior
of the person to whom the action is directed. Nor are such data necessarily con-
sistent—indeed, larger amounts of data may hold conflicting information. In toto,
a society is a large-scale, highly distributed network of agents, each of whom en-
gages is continual real-time mental simulation of its immediate physical and social
worlds. Societies of agents conduct these mental simulations in parallel, with
some actions highly synchronized and others occurring asynchronously. The ex-
tent to which these myriad parallel, distributed thoughts and actions aggregate into
coherent structures at the social level determines the overall character and per-
formance of a society. Understanding the conditions under which specific societal

                                                            
3 Indeed, it is conventional to call self-destructive behavior pathological, and to label peo-

ple who act in complete disregard of others sociopaths (Aaron 1994).



characteristics emerge constitutes an important component of the enterprise of so-
cial science.

It is conventional modeling practice in the methodologically individualist social
sciences to specify the behavior of agents and then deduce the aggregate conse-
quences of such behavior. Usually there is one or at most a few distinct types of
agent behavior specified, so that all agents execute the same behavioral rules, e.g.,
utility maximization. However, each agent's internal states may be unique (e.g.,
preferences, endowments), thus permitting agent behavior to be heterogeneous
across the population.

The class of parallel computing systems where each processor has the same in-
structions but heterogeneous data are called 'single instruction, multiple data' or
SIMD. The advantage of this architecture computationally is that since all proces-
sors have the same code they can all execute one cycle of instructions in the same
amount of physical time, meaning the processors are operating synchronously. It
is tempting to think that multi-agent systems might naturally be implemented as
SIMD, in order to take advantage of specialized high performance hardware, even
if there is no necessity for perfect synchronization. Examples of SIMD hardware
include digital signal processors (DSPs) and the cellular automata machine
(CAM). While SIMD architectures have been used for certain physical and bio-
logical models, such as pattern formation and forest fire models, they have not
been much utilized for social science modeling. For the perfect synchrony in such
hardware is at best an imperfect representation of the timing of human social in-
teractions, and at worst a fatally flawed assumption that impresses systematic arti-
facts into the resulting models. Indeed, human societies are very imperfectly syn-
chronized (Huberman and Glance 1993, Axtell 2001).4

That real societies are asynchronous will seem so second nature to many that
any further argument for such a depiction may seem overwrought. But it is im-
portant to remember that the norm in the mathematical theory of dynamical sys-
tems is to have each component of the system update synchronously (Luenberger
1979). The conventional way to deal with time lags mathematically is through so-
called delay equations, but this doesn't alter the essentially synchronous character
of dynamical systems theory.

However, from the theory of distributed computing a general mathematical
formalism applicable to the decentralized social world of human interactions can
be formulated through the partially asynchronous, parallel model of computation
(Bertsekas and Tsitsiklis 1993). Here we interpret this formalism in the context of
multi-agent systems. We shall find that by systematically incorporating out-of-
date and stochastically arriving information into expressions for the evolution of
agent populations we can, depending on the exact nature of such information lags,
obtain results that are quite different from ones formulated under synchronous up-
dating assumptions.

                                                            
4 In contrast, many important biological processes rely crucially on synchronization

(Nowak and May, 1992).



2.1 Mathematics of Distributed Social Interactions

Consider a population of N agents, each on whom has both internal states, repre-
senting its values, aspirations, memories, intentions, and beliefs about other
agents, for example, as well as partially observable external states, e.g., its en-
dowments. For the ith agent, call its vector of states, xi Œ Xi, a Euclidean space,
say, having dimension ni, i.e.,

Xi Õ ¬ni .

The dimension of agent states can vary across the population, with the overall
state having dimension n, i.e.,

n ≡ ni
i

Â ,

and the overall state space noted by X,

  X ≡ X1 ¥ X2 ¥ L ¥ XN .

Define x(t) as the state of the agent population at time t,

  x t( ) ≡ x1 t( ), x2 t( ),Kxn t( )( ) Œ X, xi ŒXi .

In general, there is some overlap between the states of distinct agents. That is,
certain elements of Xi will also be in Xj , j ≠ i, such as when two agents each have
information on the magnitude of a stock market index, say, or the local weather.
However, the values the agents have for the variable need not be the same, be-
cause they are generally out-of-date by some different amount, due to asynchro-
nous updating. Overlap in agent state vectors also arises because agent have be-
liefs about other agents—their states, past actions, intentions, beliefs, and so on,
which can also be substantially out of date.

Agents update their states asynchronously. Ti is the set of times when xi is up-
dated, and the set of all such update times is defined by T ≡ { T1, T2,…, Tn}. For
each agent i there are ni variables

  
t j

i t( ) £ t, j Œ 1,K, ni{ }
which describe the age of the current information about the jth component when i
updates at time t Œ Ti. For many components the information will not be signifi-
cantly out of date, such as an agent's memories of past actions. A specific set T to-
gether with all the t define a scenario or, more informally, a run.

Each agent’s rules of behavior are specified by a function, fi: (X, t) Æ Xi. This
function could be the result of some individual utility maximization calculus, the
result of a production decision, or any other decision process. In practice, the do-
main of this function will not be the entire state space, but rather will be restricted
to the set of other agents with whom the agent interacts, i.e., its social network.
This social network can, in principle, evolve over time, which is one reason for the
explicit time dependence of fi. The individual agent dynamics then unfold ac-
cording to



xi t + 1( ) = xi t( )"t œT i (1)

  
xi t + 1( ) = fi x1 t1

i t( )( ), x2 t2
i t( )( ),K , xn tn

i t( )( )( )"t ŒT i . (2)

The system as a whole advances through time according to

x t + 1( ) = f x(t ), t( ) . (3)

We wish to consider only those agents who are actually interacting with one an-
other, so in lieu of full asynchronism, which places no limits on how out of date
the agent information can be, we will instead utilize a partially asynchronous
specification. This means that there is some time, M—call it the societal mem-
ory—beyond which no individual has information on previous states. Stated
slightly differently, the society is purged all information that is M periods old, i.e.,

t - M < t j
i t( ) £ t .

With this notation in place it is possible to state several properties of such parallel,
distributed , asynchronous agent interactions.

Call z(t) the concatenation of the M most recent periods of state information,

  z t( ) = x t( ), x t - 1( ),K, x t - M( )( ) .

The behavior of the agent system (3)—for example, its convergence proper-
ties—are then described with respect to z(t). Assume that the set of fixed points of
f is not empty. This might be established by the Leray-Schauder-Tychonoff theo-
rem, for example. Call x* such a point, i.e.,

x* = f x*( )
with z* the M period fixed point. It is possible to establish conditions under which
this fixed point will be achieved. These results have the general character that ei-
ther (a) convergence obtains for any value of the system memory, M, as long as M
is finite, or (b) convergence occurs only if M is sufficiently small.

The convergence results obtain by analogy with the Lyapunov theorem from
dynamical systems theory (Luenberger 1979). If there exists a function, d: Z Æ [0,
•), such that

d(z(t+1) £ d(z(t)),

then every limit point of the iteration (3) yields the fixed point z*. This result
guarantees convergence to fixed points under quite general conditions. The main
difficulty in applying this method is determining an appropriate d.

While this formulation of distributed computing is somewhat messier, nota-
tionally, than the corresponding formulation of synchronous updating, it is much
more plausible as a description of real human behavior. Now, if it turned out that
the system memory, M, played little or no role in the analysis then it could use-
fully be neglected and we would recover conventional dynamical formulations.
However, as alluded to above, this is not the case in general. Indeed, rather than
consider distributed computing as an inferior version of serial computing, it turns



out that convergence can actually be faster under asynchronous conditions (Bert-
sekas and Tsitsiklis 1993). Furthermore, certain iterative processes that fail to
converge synchronously may do so asynchronously, so there is even a sense in
which this messier world can be advantageous.

Let us interpret the meaning of this formalism. First, it says that agents are not
automatons who spend all their time engaged in social interaction. Rather, agents
spend significant time doing things we do not model, occasionally waking up to
interact socially. When they do this, they use the current information they have,
even though much of it is likely old, in order to decide what to do. Certain aspects
of each such social interaction are communicated through the society of agents,
but this propagation of information is both time consuming and not guaranteed to
reach all agents. As new data arrives to each agent it incorporates it into its future
decisions, throwing out information that is older than M  periods. If social
equilibria exist—say driving on the right side of the road, to mention a coordina-
tion problem—then under mild conditions such distributed execution of an agent
system will converge to one (of perhaps several) fixed points.

Compare this approach with the conventional ‘social planner problem’ of neo-
classical economics, in which a single omniscient and benevolent social planner
globally maximizes societal utility. That the solution to this optimal control prob-
lem is identical to Arrow-Debreu general equilibrium is seen as a strength of these
approaches (Nordhaus 1992). The decentralized, distributed formulation of the
problem given above admits no such identity, suggesting that the ostensibly de-
centralized general equilibrium caricature of equilibrium is highly unrealistic.

2.2 Distributed Exchange

To be more concrete, consider the application of this formalism to the problem
of pure exchange. Specifically, there is a population of agents, each of whom has
strictly convex preferences, say, and positive endowments of all goods. When
agents are activate they are permitted to make welfare-improving trades with other
agents at mutually agreeable prices. Interpreted as a decentralized exchange proc-
ess, e.g., bilateral exchange, this formulation clearly reaches a Pareto optimal con-
figuration. But as the trading process proceeds over time prices change, so that
although the exchange path is individually rational the end state can display sig-
nificant wealth effects. That is, while Walras’ law is satisfied at each round of
trading, it fails over the whole course of trades since prices are changing (Axtell
2002). This process cleaves the agent population into two classes of agents, those
that gain wealth from the exchange process and those that lose it.

More can be said about exchange under such conditions. Consider a population
having equal endowments but heterogeneous preferences. Whether such endow-
ments are valued at the first price or the last (market-clearing) one, the initial
wealth in the population will be Dirac distributed. But the subsequent process of
exchange generates price dispersion and leads to the production of horizontal ine-
quality between the agents.



Compare this process with Walrasian tâtonnement, where the market-clearing
prices are first computed and then the agents engage in decentralized exchange at
these prices. Interestingly, in certain conditions this requires a greater number of
agent-agent interactions to produce an approximately Pareto optimal result than
does the exchange process with local prices. That is, price dispersion can improve
convergence to an equilibrum. Walrasian exchange, known to have high com-
plexity in the abstract (Papadimitriou 1994) ends up being computationally less ef-
ficient than a model in which agents act myopically—the number of interactions
required to equilibrate the decentralized market can be fewer than the number
necessary to equilibrate the Walrasian market.

Finally, the statement in Nordhaus (1992) that the two distinct formulations of
general equilibrium are governed by the same equations is analogous to a method-
ology common in computer science, that of reducing one problem to another.
However, such demonstrations of equivalence have nothing to do with whether or
not the basic problem is tractable. Indeed, reductions of this type preserve com-
putational complexity, so demonstrating formal equivalence is a way of proving
the computational intractability of conventional formulations of Walrasian general
equilibrium models.

Formal modeling in the social sciences has the character of SIMD, as we have
alluded to above. Certain models, such as discrete time dynamical systems models
in capital theory are indeed perfectly synchronized. In other models agents are ac-
tivated at random, so the models are asynchronous. Clearly the real social world,
while partially synchronous, is also asynchronous in many important ways. In
agent-based models both synchronous and asynchronous activation regimes have
been studied and compared (Axtell 2001). The great flexibility of agent modeling
with regard to activation regime is a powerful feature of this modeling approach.

3 Agents as (Distributed) Objects

There are a variety of ways to implement such models computationally, given the
highly distributed, decentralized character of agent interactions, Older program-
ming languages as well as specialized mathematical software have sufficed for the
creation of agent models.5 One way to represent agents in such systems is to in-
stantiate a vector for each agent attribute, the dimensions of which are the size of
the agent population. One then accesses agent i by getting the ith element of each
attribute vector. A somewhat more compact representation is to bring all the agent

                                                            
5  An incomplete list of languages and frameworks employed in social science research in-

cludes Ascape (Inchiosa and Parker 2002), BASIC (Holland 1996), C (Jones et al. 1997),
C++ (Tesfatsion 2002), Excel (Krugman 1996), Gauss (Lux 1998), Java (), Lisp (Daniel-
son 1996), Mathematica (Gaylord and D'Andria 1997), MatLab (LeBaron 1999), Objec-
tive C (Arthur et al. 1996), Pascal (Axelrod 1997), RePast (Cederman 1999), SDML
(Moss et al. 1998), SmallTalk and SWARM (Luna and Staffanson, 2000).



attributes together so that the entire population is a single matrix, and agent i's at-
tributes can be accessed as a row (or column) of the matrix. With this representa-
tion there is a definite sense in which each agent is a contiguous chunk of address
space, even though this will not (usually) be a contiguous physical memory space.
A further refinement in representation is obtained by  recourse to a specialized
'agent' data structure of the modeler’s specification—a ‘struct’ in C or a ‘record’
in Pascal. Here each agent’s data is physically represented contiguously in mem-
ory (modulo boundaries).

This increasing abstraction reaches its highest form in the object model—object
oriented programming (OOP)—in which data and methods for modifying the data
are brought together. This paradigm, pervasive in modern CS, is a very natural
way to implement agents. It facilitates essentially any interaction structure (social
network) and activation regime. This technology is especially powerful in the case
of agents having identical behavioral rules. For here one need only program the
methods of a typical agent once and then the corresponding methods for all agents
are available. Increasing the number of agents in a model is then merely a matter
of letting the operating system allocate the program more memory, for no addi-
tional programming is required.6 Thus, agent computing has a 'small source, large
execution' character.

Once an agent is conceived of and implemented as an object it is a relatively
easy matter today to distribute the agent objects across multiple machines on a
network. Various protocols exist for managing such distribution over networks as
vast as the entire internet itself. In the future, large-scale models may be 'run' in
just this fashion. But just how large must a model be in order to necessitate dis-
tributed computing? This is the subject we turn to in the next section.

4 Harnessing Moore's Law for Progress in Economics

Agent-based computational modeling was not feasible a generation ago, and
barely possible a decade ago.7 It is the dramatic progress in computer technology
that has made multi-agent modeling possible. This era of revolutionary technical
change8 that we all are living through is especially apparent when one looks at the
main competitor of multi-agent models, i.e., mathematical theorizing.

                                                            
6  In practice, there is such performance advantage to keeping all agents in memory that the

size of an  agent population one can feasibly work with will often be limited by one's de-
velopment environment.

7  Microsimulation, which began in the late 1950s (e.g., Orcutt et al. 1961), is similar in
spirit ot agents but quite different in character. While it also argues for a decentralized
perspective, its formulation of household level supply and demand equations makes it
one level of aggregation less distributed than agent systems.

8 See Nordhaus (2000) for a history of this revolution in performance.



Progress in mathematics has been regular and significant over the last decades.
Nonlinear dynamics, chaos, complexity, these are just a very few of the many ar-
eas of mathematics where important progress has been made. Indeed, according to
some we live in a mathematical 'golden age,' in which a growing population of
well-trained mathematicians is provided sufficient resources to conduct fruitful re-
search of the highest quality. But the central mathematical tools employed by so-
cial scientists have not really undergone this same revolution. Given the focus on
equilibrium in economics, theorems on the existence of fixed points have been
workhorses. However, since mechanisms by which such fixed points can be
achieved are rarely postulated, these results are of vague relevance empirically.
This naturally leads to dynamics.

While ideas from nonlinear dynamics have percolated into economics and other
social sciences, the relatively low dimensional nature of such models casts doubt
on their ultimate relevance given the vast size and scale of real economic and so-
cial systems. Furthermore, technical requirements of such models are so severe as
to essentially never be met in practice—time invariance of parameters, initial con-
ditions that are knowable to high precision and so on.

Stochastic dynamics are an intermediate point mathematically between these
two islands—fixed points on the one hand, full-blown dynamics on the other. But
such models introduce important new problems. For example, detailed knowledge
of the nature of the underlying stochasticity is crucial to fully understand the long
run properties of the models.9 But the extent to which such processes are 'colored'
or unbiased in reality is poorly understood. It is not the case that random 'acci-
dents' are the main driving forces of real social history, so we shouldn't expect
them to be determinant in stochastic games, for example (Goeree, Holt 1997).
"People make their own history" as Marx famously wrote, they don't merely live it
waiting to see where exogenous shocks will take them.

Conventional economic theory is essentially based on writing out agent behav-
ior mathematically, such as first order conditions derived from rationality as-
sumptions, or as equilibrium conditions resulting from no arbitrage postulates.
Subsequently these specifications are solved via operations research techniques.
Overall, the way in which modern computing power is utilized in economics is
remarkably similar to the way early digital computers were first used—e.g., to
solve equations numerically (Judd 1999), to generate random numbers. These
methods are derivative of similar techniques developed in the physical sciences
over the past 40 years (Mirowski 2001). Limiting computational economics to
such numerical workouts is both backward-looking from the perspective of eco-
nomic methodology and, even more problematically, fails to make any significant
use of modern advances in computing hardware and software.

For there is just no way to fill up a gigabyte of RAM with equations governing
either representative agents or aggregations of homogeneous agents. Disk drives
having 100 gigabyte capacity can hold many times over the results of millions of
regressions (e.g., Salai-Martin 1998). Faster clock speeds mean less waiting for

                                                            
9 See Bergin and Lippman (1996).



complicated integrations, and lead one to believe that the 'curse of dimensionality'
can at least be held at bay for 'realistically-sized' problems. More capable proces-
sors turn formerly large problems into small ones, as when one's answer appears
immediately after hitting the 'RETURN' key instead of after many minutes. But
the only satisfactory way to fully utilize the vast performance increases in CPU
speed and memory density is through agents.

It is Moore's law that is responsible for such dramatic changes in the computa-
tional landscape over the past generation. Essentially, this law states that the
power of digital computation grows exponentially. Data on the evolution of tran-
sistors/CPU are shown in Figure 1; for similar data see Moravec (1990), Kurzweil
(2000) and Nordhaus (2002).

   

Fig. 1. Moore's law realized (Intel 2001; see also Moravec, 1990 and Kurzweil, 2000)

Since the ordinate is in logarithmic coordinates, specify that the number of tran-
sistors/CPU(t) = k2t/T, were t is calendar time, T is the time constant of growth, and
k  is a constant. Transforming both sides of this equation results in
ln(transistors/CPU(t)) = kt ln(2)/T. Since the data are nearly linear, estimating T
means rearranging and computing the slope as T = (2000-1970) ln(2)/(ln(4.2x107)-
ln(2.25x103)) ~ 2. Thus, every 2 years the number of transistors in new CPU de-
signs double. This vast expansion of CPU complexity over time is responsible for
the concomitant increase in performance of microcomputers. Memory densities
have experienced similar growth and hard disk densities have had their growth re-
cently accelerated further.

All this means that we can build larger and larger agent models. My experience
in creating the Sugarscape (Epstein and Axtell 1996) and subsequent models is
shown in Table 1, where the number of agents feasibly modeled on then state-of-
the-art workstations is shown. These models were all created in relatively low
level languages (e.g., Pascal, C and C++).



Table 1.  Growth of agent capabilities on single workstations, native source code in C++

Model Years Agents
Sugarscape (Epstein and Axtell 1996) 1992-1996 O(102) - O(103)
Artificial Anasazi (Axtell et al. 2002) 1995-2000 O(102) - O(104)
Distributed Exchange (Axtell 2002) 1997-present O(102) - O(106)

Multi-Agent Firms (Axtell 1999) 1998-present O(103) - O(107)
Emergent Cities (Axtell and Florida 2002) 2000-present O(105) - O(107)

The progress evidenced in Table 1 leads one to speculate that the foreseeable fu-
ture will bring substantially larger and potentially much more interesting models
into the realm of feasibility.

Larger models promise more than mere quantity, for greater internal complex-
ity can arise as size increases.10  In the main, as human societies grow in size they
also grow more complex, as one sees in comparing the relatively simple society of
Black Mesa (Axtell et al. 2002) with the highly structured one of Chaco Canyon
in the American Southwest (Gumerman . Tens of thousands of Native Americans
inhabited Chaco at its peak, a number feasibly modeled today.

Looking beyond such anthropological models, once we learn more about how
to 'grow' human social institutions, including realistic markets, firms having inter-
nal governance structure, governments, and so on, one can tentatively forecast the
sizes of agent models that will be feasible over the coming decade. I offer one
such forecast in Table 2.

Table 2.  Prospective growth of agent capabilities on single workstations

Model Feasible by Agents
Chaco Canyon present O(104) - O(105)

Economic Sector 2004-2006? O(105) - O(106)
Small Economy 2006-2008? O(106) - O(107)
Large Economy 2008-2010? O(107) - O(108)

Writing code in a platform independent environment, e.g., Java, knocks the
maximum number of agents back by perhaps as much as an order of magnitude,
delaying these capabilities by 5 - 8 years.

Certainly this is a great time to be alive if you are a user of high performance
computing. Numerical economics simply does not have the wherewithal to fully
utilize these revolutionary forces. Agents seem to be the only way to effectively
harness exponentially growing computing power in the service of economics spe-
cifically and social science in general.11 Furthermore, building agent models leads

                                                            
10  This point was made in physics a generation ago by Anderson (1973).
11 A recent article Joy (2000) argues that we need to worry about the growing power of our

computing machines in the sense that once they become sentient they will quickly be-
come superior to us, intellectually, physically, and ultimately perhaps economically and
politically. However, purely on organizational grounds this  is highly unlikely: no matter



naturally to relaxation of neoclassical modeling assumptions, a subject explored in
the next section.

5 Agent Computing for Generalizing Economic Theory

A canonical usage of agents in economics is becoming clear: specify agent state
variables and rules of behavior, let the system spin forward in time and observe
the emergent macrostructure. This usage poses an immediate challenge to all va-
rieties of mainstream theory, for situating behaviorally plausible agents in realistic
interaction environments may or may not yield neoclassical results. By testing the
robustness of conventional models, agents play a powerful disciplinary role, de-
limiting credible models from implausible ones.

For there are a large number of reasons why seemingly plausible theorems
might fail in practice—e.g., perhaps a theorem only obtains asymptotically but the
agent model, like the real world, runs in finite time; maybe noise, omnipresent in
agent models, is sufficient to destabilize the equilibria that are known to exist as a
consequence of a theorem; it could be that a theorem is sensitive to the agent in-
teraction structure, but analytical results are available only for unrealistic social
networks (e.g., lattices, random graphs); or conceivably a theorem is brittle to
generalization along multiple dimensions simultaneously (e.g., altered interaction
topology and activation regime).

But the most likely reason why most theorems are likely to fail once equivalent
models are implemented with agents and progressively generalized is due to the
heroic assumptions commonly employed in mathematical theorizing.

5.1 Societal Equilibrium Requires Agent Equilibrium?

It is either a tacit or explicit claim of game theorists (Binmore 1987, 1988) that
explanation of social patterns and regularities at the aggregate level demand agent-
level equilibrium, typically Nash or some refinement.12 Clearly, if equilibrium at
the agent level obtains there results macro-level equilibrium. But agent level equi-
librium is not a necessary condition for aggregate equilibrium, merely a sufficient

                                                                                                                                      
how intelligent individual machines become, they would find it difficult to organize
themselves socially. For such intelligent forms would have no history of highly evolved
self-governance structures, as do humans, and almost certainly would not be well-served
by the kinds of institutions that humans have prospered under over the past several mil-
lennia—crudely, the family, private property and the state. In short, Joy's idea is naive
from a social science perspective, a kind of negative utopia in the spirit of the literary
genre that includes George Orwell, Stanislaw Lem and  Philip K. Dick.

12 Against this position see (Gilboa and Matsui 1991) and (Shibik 1999).



one (Axtell 1992).13 A different path to such configurations is via adaptive be-
havior within large agent populations, such that the macro-state is stationary.

To make this more concrete, consider an agent model of firm formation (Axtell
1999). Here, individual agents pursue utility improvements non-cooperatively in
team production environments. At the end of each period of the model, each
team’s production is tallied and various compensation rules allocate income to the
agents. Each time an agent is activated it may stay a part of its current team, mi-
grate to another team, selected at random, say, or it can start-up a new team, de-
pending on which option it believes will yield the greatest welfare. While Nash
equilibria always exist in this strategic environment, they turn out to be dynami-
cally unstable for sufficiently large teams. Operationally, this just means that there
is no way to partition the agent population into teams that is individually rational.
What is observed in the model is the formation of productive teams that have a life
of their own, admitting new employees while continually shedding other agents as
outside opportunities arise. This is not unlike the real-world, where job turnover is
a constant feature of labor markets. However, despite this continual flux and ad-
aptation at the agent level, there emerges in this model stationary aggregate distri-
butions of firm size and output, firm growth rate, and firm lifetime. In the agent
population, while the fortunes of individual agents are somewhat variable, de-
pending on how well their firm is doing at any instant, the distribution of income
also assumes a stationary, highly skew configuration.

Under what conditions are claims about agent-level equilibrium reasonable, and
when are they unlikely to be realized in practice? While this is a difficult question
in general, one clear cut case against agent equilibrium occurs when the Brouwer
or Kakutani fixed point theorems are used to prove that such equilibria exist. For
example, proofs of the existence of Nash and Walrasian equilibriua proceed from
these theorems, so we are questioning the foundations of neoclassical economics.
Specifically. Papadimitriou (1994) has proved that the computational complexity
of Sperner's lemma, which serves as a constructive route to a proof of Brouwer, is
essentially NP complete, among the most difficult problems in all computer sci-
ence. Therefore, unless an alternative mechanism is given, social systems that de-
pend solely on Brouwer or Kakutani should be viewed as unlikely, at best, to be
realized in practice.

5.2 Rationality Postulate Derivative of Homogeneity Assumptions

Homogeneous rules of behavior—essentially utility maximization discounted over
time or 'best reply' when agents are myopic—constitute the norm in economic
modeling today. Assuming all people have the same decision-making rules is
clearly false empirically (Newell and Simon 1972). Here we will argue this as-
sumption is necessary to render rational models consistent, and that as soon as

                                                            
13  Indeed, any claim of the necessity of agent-level equilibrium for macro-equilibrium is

guilty of the classical fallacy of division (Angeles 1981).



significant behavioral heterogeneity is introduced, rationality ceases to be of much
use.

When heterogeneous behaviors are present—say, some largely rational, some
merely purposive—then some behaviors may be able to prey upon others. But
such predator-prey interactions are dynamic and the social environment can shift
in such a way that roles get reversed and prey become predators. Otherwise ra-
tional agents, if they are even well-defined in such circumstances, may not be op-
timal—at least over particular epochs—given sufficient behavioral heterogeneity.
For example, a simple 'best reply' strategy may be able to outperform a purely ra-
tional one in rapidly changing environments, precisely because it is adaptive and
opportunistic. Diverse behaviors in large populations can perhaps best be thought
of as ecologies of behaviors whereby action A lives off B which profits from inter-
acting with C which can then reliably win against A, say.14 Such behavioral ecolo-
gies can be stationary at the aggregate level despite constant flux at the micro-
level, i.e., perpetual adaptation by agents.

An example of just this kind behavior in agent-based models is Lux (1997) in
which there are various strategies for trading in an artificial financial market. The
ability of fundamentalist (rational) traders to change to chartists plays an impor-
tant role in the achievement of empirically significant price dynamics.

When economic models feature only rational agents then there do not exist
such stable ecologies of behaviors to exploit and we are back in the world of ag-
gregate social stability resulting from agent level (Nash) equilibrium. There are
today a variety of models in which rational and non-rational agents co-exist with
both populations capable of surviving over long time scales.

Departing from rationality brings another implicit operating principle of agent-
based modeling into full view. We are completely open to mathematical analysis
of our models, especially when the analysis attempts to deal with the full general-
ity of agent models as described formally above. But we essentially always endow
our agents with heuristics and rules of thumb, never permitting them to be ‘agent
mathematicians’ who are as capable mathematically as are we (Gigerenzer et al.
1999). Related to this is the idea that agents can credibly follow utility gradients,
groping for welfare improvements, while from behavioral economics we know
that they are largely incapable of elaborate deductions about the behavior of oth-
ers, e.g., performing backward induction.

5.3 Interaction Networks

Humans interact through social networks. Typically, agents in economic models
either interact with one another with equal probability or do not directly interact at

                                                            
14 In other domains such interacting strategies are known as hypercycles (e.g., Eigen and

Winkler, 1992, and Padgett, 1997)



all but rather use global information about other agents' behavior in their decision-
making.15

In agent models it is easy to reproduce the conventional modeling assumptions
(global interactions) but it is not much more difficult to reproduce the kinds of in-
teraction topologies that occur in reality. These often have the character of 'small
worlds' (Watts 1999), and are conveniently synthesized as an intermediate form
between regular graphs, like lattices, and random graphs. Too, when empirical
data on social networks are available these are easily incorporated into agent-
based computational models.

5.4 The Emergent Macroeconomy

The actual economy of any city, region or nation is a vast, sprawling, dynamic and
adaptive system of relatively loose inter-firm networks and tighter intra-firm or-
ganizations, all interacting through markets. The size and annual growth of an
economy depends crucially on a variety of poorly understood human behavioral
characteristics, including consumer sentiment, producer demand forecasts and the
resulting intermediate goods orders, response to interest and exchange rate
changes, discounting behavior, and compliance with tax policy. The economy
consists of banks, bond dealers, grocery stores, an army of the self-employed, the
unemployed, factories, and entrepreneurs, among many, many other business en-
tities. The economy possesses top down regulatory structures (e.g., the U.S. Fed-
eral Reserve System) but is as much a creature of bottom up emergence, resisting
outright control. Real economies are also highly evolutionary, non-stationary on
long time scales, growing in absolute terms and continually being revolutionized
technologically. Leading firms in one generation are often in decline by the next,
dominant industries at the start of a century are rarely around by the end. The pace
of technological change is only exceeded by the speed at which speculations about
the 'new era' are dashed on the shoals of the omnipresent business cycle, driven by
waves of over investment.

The macroeconomy grows out of the myriad interactions of the economic
agents that compose it, so it is more than a little methodologically unnerving to
discover the lack of coherent microeconomic foundations for today's competing
schools of macroeconomics. Of course, the mere fact that there are competing
schools is an indication of the lack of such foundations. But while the desire to
have such foundations is not debated, the character of them is.

Once we learn how to build the main components of a market economy with
agents, it will be possible to jettison macroeconomic (mis)specifications com-
pletely and simply have macro statistics emerge from the interactions of large
numbers of individual agents. This will be a new era for macroeconomics and in

                                                            
15 More recently, local interactions have made their way into economics (Kirman 1995,

Durlauf 1999).



Table 3 we suggest that, at least in terms of hardware, this day may not be too far
away.

Table 3.  Prospective growth of agent capabilities on single workstations
Model Feasible by Agents

Small country macroeconomy 2002-2004? O(107)
Industrial country macroeconomy 2004-2006? O(108)

U.S. macroeconomy 2006-2008? O(109)
World economy 2008-2010? O(1010)

Today we recognize a previous era's search for a literal 'fountain of youth' to be
quioxitic: from the perspective of modern science it is reasonable to believe that it
is unlikely to naturally exist. Perhaps the same is true of 'microfoundations for
macroeconomics. For there must be many micro-specifications of agent behavior
that are consistent with any extant macro-economy. Juxtapose the locations of the
local video and convenience stores and the same macroeconomy will result. How
different would things really be if the auto industry were in New Jersey and phar-
maceuticals were in Michigan? One way to frame such discussions is through the
physicists' notion of universality, in which certain details of dynamical processes
can be neglected if one captures other essential, universal features. Different kinds
of molecules have similar freezing dynamics although in general quite different
structure. Macroeconomics as a science is really only possible if something like
economic universality exists, e.g., if wide classes of economies have the same
growth dynamics, independent of whether the video and dry cleaning store loca-
tions are swapped.

Underlying all this is the problem that we don't have a coherent understanding
of emergence, either in economic contexts or in general (Nagel and Paczuski
1995). The way purposive agents interact to produce not merely a change in
quantity but a change in quality is a key to understanding the evolution of the
economy. Until we understand emergence we will not understand macroeconom-
cis. An analogous situation exists in physics and other sciences today (Laughlin
and Pines 2000, Laughlin et al. 2000):

We call this physics of the next century the study of complex adaptive matter. For better
or worse we are now witnessing a transition from the science of the past, so intimately
linked to reductionism, to the study of complex adaptive matter, firmly based in experi-
ment, with its hope for providing a jumping-off point for new discoveries, new concepts,
and new wisdom.

6 The Future of Economics as Agent Computing

The economics profession was an early adopter of high speed digital computation
(Mirowski 2001). The early machines were adept at solving equations, particularly
linear ones, and economics with its growing mathematical orientation was one of
the few disciplines readily capable of rendering its formalisms in the new digital
language.



For a long time computing was synonymous with mathematics and the solution
of equations. Indeed, the most popular programming language of the era was an
acronym for FORmula TRANslation. What is even more, computer science at the
time focused nearly exclusively on programming, and questions concerning the
most appropriate programming language for particular problems (e.g., assembler
for writing operating systems, COBOL vs. RPG for business systems, etc.) to-
gether with efficient numerical algorithms, constituted the bulk of the subject
matter studied.

As modern computer science has morphed from the study of programming lan-
guages and numerical analysis, and as the subjects being analyzed have moved
well beyond the mere solution of equations, the economics profession has been in
something of a time warp, largely failing to adjust to new circumstances, missing
the opportunity to adopt powerful new technology. This paper has argued that
there exist sufficient conditions for this situation to change, and that it is necessary
to change in order for economics, specifically, and social science, generally, to
harness modern computing power.
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