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 Abstract′∗ 

 
Recently discovered facts concerning the size distribution of U.S. firms are recapitulated—in short, 
these sizes are closely approximated by the Zipf distribution, a Pareto (power law) distribution 
with exponent of unity. Interesting consequences of this result are then developed, having 
primarily to do with formulae for the distribution’s moments, and difficulties of reasonably 
characterizing a ‘typical’ firm. Then, a leading candidate explanation for these data—the Kesten 
random growth process—is assessed in terms of its realism vis-à-vis actual firm growth. Insofar as 
it has fluctuations that are quite different in character from actual firm size variability, the Kesten 
and related stochastic growth processes qualify more as fables of firm growth than as credible 
explanations. Finally, new explanations of the facts are proposed by considering firms to be 
partitions of the set of all workers. Assuming all partitions to be equally likely, the observed 
distribution of firm sizes is hypothesized to be the distribution of block sizes in the most likely 
partitions. An alternative derivation of this distribution as a constrained optimization problem is 
also described. Given that these calculations involve unimaginably vast magnitudes, it seems just 
short of fantastic to consider them relevant empirically. 
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I A Brief History of the Firm Size Distribution

Gibrat (1931) inaugurated the systematic study of this subject,

finding that the lognormal distribution well-described French industrial

firms. Subsequently, similar analyses were carried out for other

countries (e.g., Florence (1953) in the UK). Economic theorists joined the

discussion with Simon’s attempts to explain the skew and leptokurtic

size distributions obtaining among publicly-traded firms, by recourse to

stochastic growth models (Simon 1955; Simon and Bonini 1958; see also

Steindl 1965). Such models contain essentially no elements of

conventional economics (e.g., prices, profits), yet so well rationalize these

extremely regular data that Simon was led to inveigh caustically against

the neoclassical U-shaped cost curve explanation of firm behavior and

‘optimal size’ (Ijiri and Simon 1977: 7-11). Given the undeniable

regularity of these data, discussion of skew firm size distributions

entered into the developing field of industrial organization (IO), although

accompanied by little of Simon’s critique (e.g., Scherer 1970; 1980).

Over about a generation, from the early 1970s until now, IO

progressively assimilated a game theoretic orientation, viewing the firm

as a unitary and rational actor engaged in playing market games non-

cooperatively. This led to the monotonic increase in strategic

considerations in IO texts (e.g., Tirole 1988), crowding out many classical

concerns, including empirical results like the firm size distribution.

Indeed, the situation has evolved to such an extent that IO students

today may never encounter any discussion of firm size distributions in a

modern textbook (e.g., Shy 1995)!

Sutton (1998) is one of the few IO researchers who did not lose

sight of skew firm size data as game theory conquered IO. His work uses

firm size distribution data—across markets and industries—as important

constraints on the kinds of game theoretic models that are worth writing

down.
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A related stream of economic research in which matters of firm

sizes loom large is that of small business economics. Nearly ubiquitous

in this area is some measure of what constitutes a ‘small’ firm or

establishment, along with some other measure of the frequency of such

entities. But this literature tends to be heavily descriptive and non-

quantitative, and when it finally turns econometric, the kinds of

specifications employed are seemingly much more informed by

neoclassical assumptions than the skew character of the empirical data.

Outside the mainstream of economics, but a research orientation

that explicitly recognizes the importance of firm sizes, is work on

organizational ecology (e.g., Carroll and Hannan 2000). These efforts are

further concerned with the closely related firm-specific variables of age

and growth, as well as industry-specific life cycles. Unfortunately,

explanations of firm size in this literature are often more qualitative than

quantitative, and only weakly-related to data.

Today, facilitated by advances in information technology, ever more

current and accurate data on firms are progressively becoming available.

This represents an important scientific opportunity, but is

simultaneously an ironic development given the state of the IO textbooks.

This paper explores what these new data are telling us about the

complete universe of U.S. firms—their sizes, dynamics, employment

characteristics, revenue streams. We are particularly interested in two

aspects of these data: (1) developing some measure of the ‘typical’ U.S.

business firm; and (2) exploring alternative explanations for why the data

are what they are. We shall find that (1) is surprisingly difficult, while (2)

is almost too easy, at least in the sense that many candidate

explanations present themselves. Taken together we are left with the

distinct impression not that the firm size distribution is a statistical

curiosity that is well understood, but rather that it is a deep and

enduring mystery that gives up its secrets only grudgingly and, even

then, only in code.
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II The Facts

In previous work (Axtell 2001) I have reported that the distribution

of U.S. firm sizes closely follows the Pareto distribution with exponent

near unity, i.e., the Zipf distribution.1 Noting the size of a firm by S, with

s referring to some specific size, the tail CDF of this distribution is

    

€ 

Pr S ≥ s[ ] =
s0

s

 

 
 

 

 
 

α

, (1)

where s0 is the minimum size and α is a parameter. This distribution is a

classical example of a power or scaling law. The empirical data for 1997

are shown binned as a PDF in figure 1 below, with size measured by

employees, along with a line having α = 1.059.2

  

Figure 1: PDF of U.S. firm sizes, 1997 Economic Census data

Thee Zipfian character of this distribution is robust to alternative

definitions of firm size (e.g., firm receipts).

Data of such vast regularity are highly unusual in the social

sciences. Only at the extremes of the support do the data depart in any

systematic way from the distribution. Indeed, there are relatively too few

very small and very large firms in the data. Such deviations are often

                                        
1 The Zipf distribution is usually considered a discrete distribution; more on this below.
2 The origin of these data are tax filings and, for reasons of confidentiality, only binned
data are available. The kinds of statistical procedures used on these data are therefore
not generally commensurate with other papers in this volume that analyze raw data.
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termed ‘finite size effects’ in the literature on scaling laws, meaning

simply that the size of real firms is bounded both from above and below,

and so it is precisely at these limits of support where deviations occur.

That power laws describe the upper tail of the firm size distribution

has been known for some time (e.g., Simon and Bonini 1958; Ijiri and

Simon 1977), but it was always thought that there existed some

minimum size below which the number of firms decreased (e.g.,

Mandelbrot 1997: 204). Clearly this is not the case as the mode of this

distribution is a single employee. That one distribution describes

essentially the entire firm size distribution suggests that a uniform

process of firm growth and decline is operational over all firm sizes. In

§IV below we will describe such processes. But first we turn our attention

to some of the peculiar properties of this extremely skew distribution.

III The Formulae

Zipf distributed random variables (RVs) are quite different from the

kinds of RVs on which students of probability cut their teeth. Zipf RVs do

not follow the central limit theorem (CLT), but rather are, asymptotically,

members of the class of so-called stable distributions. The origin of this

violation of the CLT is the non-existence of the second and higher

moments of this distribution. Furthermore, for firms the first moment is

barely meaningful. These facts are recounted in this section along with

various other formulae relevant to Zipf and near-Zipf distributions.

1 Moments: Non-Existence of Second, Limited Utility of First

The Pareto distribution is sufficiently skew that all moments

beyond the αth do not exist. To see this, we start with the Pareto PDF

    

€ 

f s( ) ≡ αs0
α

sα+1
(2)

and compute its mth moment

    

€ 

sm f s( )ds
0
∞∫ = αs0

α sm−1−αds
0
∞∫ =

αs0
m−α

α −m
(3)
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Clearly, this expression is only meaningful for α > m.

From the 1997 firm size data, the average firm size is 19.00

(105,299,123 employees/5,541,918 firms). Using (3) together with the

empirical estimate of α = 1.059 gives a mean firm size of approximately

17.95, in reasonable agreement with the empirical value.

The moments of any finite data will always exist. Since we are

dealing with α just larger than 1, non-convergence of the second moment

simply means that as additional data are added to partial computations

of the variance there is divergence from previous estimates. An example

of this is shown in figure 2 below for two distinct partial sum paths

through 104 Zipf distributed random variates (i.e., α = 1).

 

Figure 2: Non-convergence of the second moment of firm sizes

Note in this figure that each sample path ends up at the same point, but

each has a unique trajectory, and is clearly diverging, not converging.

For the value of α we have for firms, the first moment is well

defined, but just barely. For if α  were unity then it too would be

undefined. For any finite sample and α close to 1, it is an open question

as to how reliable the mean value will be, i.e., whether there are enough

data from which to build up a reliable estimate of it. Indeed, the average

size itself is scaling (Feller 1971), implying that the distribution of mean

values also follows a power law. Essentially, the mean value can range

very widely over the support. This peculiar property in the context of a
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different data set3 has been termed the ‘nobody knows anything’

principle, since it implies that it is very difficult to make accurate

predictions about the ‘typical’ value of such processes (De Vany and

Walls 2002; De Vany and Walls 2004). This should make us skeptical of

any econometric work based on the time series of average firm size (e.g.,

Simon 1957; Lucas 1978; Kumar, Rajan et al. 1999).

Because of the nonexistence of the second moment of the Pareto

and Zipf RVs we are working with here, the conventional CLT does not

hold, for a requirement of the CLT is a finite second moment. Rather, it is

the so-called stable RVs that are more closely related Pareto ones, at

least asymptotically (Samorodnitsky and Taqqu 1994). Stable RVs have

their own CLT: suitably normalized sums of iid stable RVs are stably-

distributed. Such RVs assault our Gaussian-trained intuition.

2 Alternative Measures of Location and Dispersion

Given the limited utility of the mean in the case of firm sizes, and

the irrelevance of the variance, here we investigate other measures of

location (i.e., central tendency) and dispersion (i.e., inequality).

The modal value of a Pareto distribution is s0 which we fix at 1, in

accord with firm employee data. The median, M, is

    

€ 

M = s02
1

α . (4)

Using the value of α above, M ≈ 1.89, and since we are measuring size in

terms of employees let us call this 2, which is also what it would be in

the idealized case of the pure Zipf distribution, i.e., α = 1 with s0 = 1.

This is reasonably different from the median estimated from the actual

data, which is between 3 and 4.

The geometric mean, G of the Pareto distribution always exists and

can be written in terms of the parameters as

                                        
3  For Hollywood movies De Vany (2004) has found stable distributions of profits with α
~ 1.26, which is somewhat less skew than the Zipf distribution.
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€ 

G = s0 exp
1

α

 

 
 

 

 
 . (5)

For the empirical α, G ≈ 2.57. It would be slightly higher—G = e ≈ 2.72—

in the case of a true Zipf distribution. The actual geometric mean is

unknown since the raw firm size data are unavailable.

The harmonic mean, H = (E[S-1])-1 exists for the Pareto distribution

and can be represented symbolically as

    

€ 

H = s0 1 +
1

α

 

 
 

 

 
 . (6)

For U.S. firm sizes H ≈ 1.94, while it is 2 for the Zipf distribution.

Moving on to measures of dispersion, the Gini index, g, is a

standard measure of inequality, more commonly encountered in the

context of income and wealth distributions. g ∈ [0, 1] with low values

representing little dispersion and high values the reverse. In the case of

the Pareto having α > 1, it amounts to

    

€ 

g =
1

2α −1
.

For our firm size data, g ≈ 0.894, which is very high indeed—much larger

than Gini indices typical of income data, and larger even than estimates

for U.S. wealth—further evidence of the extreme skewness of firm sizes.

3 Representation: Finite vs. Infinite Support

In practice, the support of empirical data is always finite. This

leads to consideration of the so-called ‘truncated Pareto distribution’

(Johnson, Kotz et al. 1994: 608).4 For support on [s0, s∞], it has CDF

    

€ 

Pr S ≤ si[ ] =

1−
s0

si

 

 
 

 

 
 

α

1−
s0

s∞

 

 
 

 

 
 

α
=

s∞
α

si
α

si
α − s0

α

s∞
α − s0

α
. (7)

When s∞ » s0 this expression becomes

                                        
4 Truncated zeta distributions have also been considered (e.g., Mandelbrot 1997: 202).
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€ 

Pr S ≤ si[ ] = 1−
s0

si

 

 
 

 

 
 

α

(8)

which is equivalent to (1). This last condition certainly holds for the firm

size data—s∞ ~ 106 » s0 ~ 1—so we can use (1) with little error. For firm

size measured by receipts, s∞ ~ O($1011) » s0 ~ O($105) and this condition

continues to hold. For the near-Zipfian case of α ~ 1, (7) can be written

    

€ 

Pr S ≤ si[ ] =
s∞

si

si − s0

s∞ − s0

The moments of the truncated Pareto distribution always exist and

the first two can be shown to be

    

€ 

µ =
α

α −1

s0s∞
α − s0

αs∞

s∞
α − s0

α

    

€ 

σ 2 =
α

2 −α

s0
αs∞

2 − s0
2s∞

α

s∞
α − s0

α
−

α

α −1

s0s∞
α − s0

αs∞

s∞
α − s0

α

 

 
 
 

 

 
 
 

2

.

For s∞ » s0 these become

    

€ 

µ ≈
α

α −1
s0 − s0

αs∞
1−α( ) (9)

    

€ 

σ 2 ≈
α

2 −α
s0
αs∞

2−α −
α

α −1
s0 − s0

αs∞
1−α( )

 

 
 

 

 
 

2

. (10)

Note that in this limiting case, i.e., of s∞ » s0, the PDF (8) does not depend

on the upper support limit, s∞. However, this parameter is present in the

expressions for the moments, (9) and (10), where its effect is to create a

deviation from the comparable expressions for the non-truncated Pareto

distribution. In particular, if we estimate the mean firm size from the

data using s∞ = 106, we obtain 9.95, substantially below the actual value

of 19.0. However, as one increases s∞ progressively the estimate of the

average increases monotonically until, in the limit of s∞ ↑ ∞ one obtains

the value associated with the non-truncated distribution, i.e., 17.95.

The median of the truncated Pareto distribution can be derived as

    

€ 

M = 2

1

a s0s∞

s∞
α + s0

α( )
1 α

. (11)
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Clearly this specializes to (4) in the limit of s∞ » s0. Using the values of

parameters for the 1997 data gives M ~ 1.92.

A notion related to finite support is that of having large expanses of

the support that are unpopulated. This is not the case with the Pareto

distribution, but is true of a class of distributions due to Haight

(Johnson, Kotz et al. 1993: 469-471). The application of such

distributions to firm size data may be a fertile area for future research.

4 Representation: Discrete vs. Continuous Support

For firm size measured in terms of employees, it is natural to

conceive of firm size, S, as a discrete RV, and the firm size distribution as

a discrete distribution. In such circumstances a Zipf-like probability

density function is the so-called zeta distribution, having PMF

    

€ 

Pr S = si[ ] = csi

− α+1( )

for si ≥ s0, the minimum size.5 The constant, c, is related to the Riemann

zeta function, defined as

    

€ 

ζ k( ) ≡ i−k

i=1

∞

∑ ,

such that

    

€ 

c = si

− α+1( )

i=1

∞

∑
 

 
 
 

 

 
 
 

−1

=
1

ζ α +1( )
.

The mth moment of this distribution is (Johnson, Kotz et al. 1993: 466)

    

€ 

µm =
ζ α −m +1( )
ζ α +1( )

,

for m  < α; for m ≥ α; the moment is infinite. For the estimated α, the

mean is 11.0, too small by a considerable margin. Almost certainly this is

due to having too few of the smallest firms in the actual data, at least

with respect to the number required by the zeta distribution.

                                        
5 This is also known as the discrete Pareto distribution (Johnson, Kotz et al. 1993: 466).
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5 Alternative Notions of the ‘Typical Firm’: Florence Median

Another property of the Zipf distribution we wish to explore has to

do with the discrepancy between the typical firm with respect to all firms

and the typical firm with respect to all workers. Remember that the

average firm size in 1997 was 19.0, computed on the basis of

comprehensive data on firms, but it could also have been obtained from

a random sample of firms.6 But what if we poll not the firms but workers

in the firms, and ask them the size of their firm? If we average over all

employees are we going to get the same result? That is, if we select

workers with a uniform probability and ask them what size their firm is,

do we get 19.0 again? The answer is ‘no’ and dramatically so, for the

typical employee works in a firm much larger than 19. One way to see

this is to compute the median of the distribution of employee weighted

firm sizes, i.e., of the PDF sf(s), suitably normalized. This turns out to be

    

€ 

α −1( )s0
α−1

sα

for α > 1. Compared with (2), note that this expression is just a Pareto

distribution with an exponent larger than that of the underlying firm size

distribution by unity. Having a smaller exponent means that this

distribution is even more skew than the firm size one!

Näively, one might think that the mean of this employee-weighted

size distribution could be readily computed. Unfortunately, the mean of

this distribution is in essence the variance of the original firm size

distribution, which does not exist. So characterization of a ‘typical firm’

weighted by employee size will be even more difficult in this case.

Since the median always exists, we can compute it for this

employee-weighted firm size distribution. This was apparently first done

empirically by Florence (1953), and is referred to by some writers as the

Florence median (Pryor 2001). Given our lack of access to raw data we
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cannot determine this quantity exactly, but from Small Business

Administration firm size tabulations it appears that it is between 500 and

1000 employees. For the Pareto distribution with unbounded support we

can use (4) to compute the median, with α reduced by unity to account

for the employee weighting. Doing so yields a Florence median for firms

in 1997 as M = 126,500, which is too large by a considerable margin.

Alternatively, if we use the truncated Pareto distribution then the

Florence median, computed by (11) with s∞ = 106, is M = 254, which is

much closer to the empirical value.

For a Zipf distribution of firm sizes, the employee-weighted firm

size distribution has some peculiar properties. For example, the number

of employees in each size ‘bin’ is equal when the bins are logarithmically

sized. To see this we use logs of base b and compute

    

€ 

sf (s )
b x
b x +1

∫ ds = s
s0

s2b x
b x +1

∫ ds = s0 ln bx +1( ) − ln bx( ) 
  

 
  

= s0 ln b( )

which is independent of x and thus constant. In the firm size data this

condition is not strictly met. Specifically, for an exponent of 1.059

instead of unity, a discrepancy is introduced such that

    

€ 

s
αs0

α

s2.059b x
b x +1

∫ ds ∝ b−0.059x

This expression is slowly decreasing in x, meaning there are somewhat

more employees in the small size bins than in the large ones. This

pattern is approximately confirmed in the data.

These results suggest that in formulating tax and other business

policies, democratic governments should give at least as much

consideration to firms having between 1 and 10 employees as to those

having 105 - 106 workers.

6 Disaggregation into Industries

The distributions of firm sizes within industries, according to

                                                                                                                        
6 Assuming, that is, that the data were sampled properly from a skew distribution!
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various classifications, are well-known to be skew (Schmalansee 1989),

but the Pareto distribution does not seem to well-describe all or even

most industries (Quandt 1966). Consider the following alternative.

Assume there is some idiosyncratic distribution of firm sizes; then, if the

distribution of industry sizes is Zipfian, under a wide variety of

conditions, the overall size distribution will be as well. Unfortunately,

this hypothesis is rejected by the data. Asplund (1998) advanced the

similar notion that it is market size that is Zipf distributed, but this

appears to also be false empirically.

Sutton (1997; 1998) has argued that within markets and

submarkets there are exponential bounds to firm size, with parametric

heterogeneity across markets and industries. He has pioneered the

'bounds' approach to firm size, which results in the hypothesis that

exponential distributions bound intra-market and potentially intra-

industry skewness, depending on whether markets are independent.

We can use Sutton's hypothesis to motivate the existence of the

Zipf distribution at the aggregate level. Let Ψ be a RV representing the

exponential distribution of firm sizes in a particular industry, having PDF

    

€ 

ψ s;s ( ) =
1

s 
exp −

s

s 

 

 
 

 

 
 ,

were s stands for size and   

€ 

s  is the average size in the industry, a

parameter. Now, if the distribution of average sizes across industries, A,

is a random variable distributed according to a Pearson type V

distribution, with parameters λ and β, i.e.,

    

€ 

a s ; λ, β( ) =
λβ

Γ β( )s 1+β
exp −

λ

s 

 

 
 

 

 
 ,

then the overall size distribution will follow a modified Pareto law, since

    

€ 

f s; λ, β( ) = a s ; λ, β( )ψ s;s ( )ds 
0
∞∫ = βpβ 1

λ + s

 

 
 

 

 
 

1+β

.

Preliminary analyses of U.S. data reveals that the distribution of average

industry sizes is very well-fit by the Pearson V, as shown in figure 3
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below for SIC 4 digit industries in 1997. The largest average firm size

exceeds 11,000 employees (department stores) in these data.

 

Figure 3: Distribution of U.S. average industry size for SIC 4 digit data in 1997

Overall, this result—that firm sizes are approximately exponentially

distributed (Sutton’s hypothesis) and that average firm size across

industries is Pearson type V distributed, gives us a better understanding

of how the Zipf distribution arises. However, in essence this simply

pushes the question of the origin of skew sizes back one level, to the

origin of industry sizes.

IV The Fables

Beginning with Gibrat (1931), and continuing with Simon (1955),

Steindl (1965) and others, explanations of firm sizes have been proferred

based on purely random processes. These have come to be known as

stochastic growth models. Each of these generates skew distributions,

the lognormal in the case of the Gibrat process, the Yule distribution in

the case of the Simon model, and a Pareto in the work of Steindl. In order

to get the size distribution to agree with empirical data, these models

must be ‘tuned’ parametrically. This is not problematical conceptually,

although it is viewed as a drawback by some (e.g., Krugman 1996).

Alternatively, a model that does not require parameter adjustment

to produce the Zipf distribution is the so-called Kesten process (1973). It
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has been proposed as an explanation of city sizes (Gabaix 1999) and firm

sizes (Axtell 2001). Call γ(t) a random growth rate at time t. The Kesten

process is essentially the Gibrat random growth process with a lower

bound on size. Call Si(t) the size of the ith entity at time t. Then its size at

time t+1 is

    

€ 

Si t +1( ) = max s0,γ t( )Si t( )[ ]
Analysis reveals that this process yields a Pareto distribution of sizes,

with exponent near unity.

However, some aspects of this process seem to be quite unrealistic.

Specifically, since the number of firms is held constant in this process, it

follows that all the variation in average size is due to fluctuations in the

total size of the system. Now, this may be a reasonable assumption for

city formation models, where the number of cities is more or less fixed,

but for firm formation it is completely inappropriate.

There are many variations on this basic firm growth process that

are more plausible, involving firm entry and exit, serially correlated

growth rates, growth rate variance that changes with firm size, and so

on. Indeed, there is a large ‘equivalence class’ of models that yield skew

distributions of firm size, but none of these models contain any

significant amount of economic reasoning, suggesting that random

growth processes may not be the whole story.

What is needed instead is a model in which entry and exit are

endogenous. Such a model, written at the agent level, exists and closely

reproduces the empirical data (Axtell 1999). What seems like a better

assumption in this case is to use a constant (or slowly growing)

population and permit the number of firms to ebb and flow. This moves

the origin of fluctuations in the average firm size to variations in the

denominator, i.e., the number of firms, since the population is constant.
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V The Fantasies

If it is really possible to explain the firm size distribution without

recourse to economics, as the fable of random growth suggests, it might

be possible to come up with other non-economic explanations that are

perhaps less fabulous. One such explanation is the subject of the

present section. While this idea is quite simple to state in words, it turns

out to involve incredible calculations, computations so fantastic that this

explanation will, at first blush, seem little more than fantasy.

1 Set Partitions: Firms Composed of Unique Workers

Consider the set of all people hired as employees in the U.S. in a

particular year, and call this set E, with |E| = n. A partition, P, of E is a

set of non-empty, pairwise disjoint subsets of E having the property that

their union is E; |P| = k. Such subsets are commonly called blocks,

classes or parts. Symbolically, the blocks Bi, with i ∈ {1, 2,…, k}, form a

valid partition P of E when

    

€ 

Bi IB j = ∅∀i ≠ j  with 
      

€ 

Bi
i=1

k

U = E

We will consider each block to be a firm—employees are only permitted to

have one job—and a partition to be the set of firms in an economy, with

the union of all firms being the set of all employees.

For a given set, E, the number of partitions into k blocks is given

by the Stirling numbers of the second kind, S(n,k). Expressinos for S(n, k)

are known in both recursive and closed form (Bogart 2000: 100, 127):

    

€ 

S n,k( ) =
n −1

i

 

 
 

 

 
 S i,k −1( )

i=0

n−1

∑ =
1

k!
−1( )i k

i

 

 
 
 

 
 k − i( )n

i=0

k

∑

The asymptotic behavior of S(n, k) has been known since at least the time

of Laplace (Odlyzko and Richmond 1985). For each n the Stirling

numbers are unimodal in k, as illustrated in figure 4 for n = 100.
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Number of partitions, S(n, k)

k

Figure 4: Stirling number of the second kind, S(n, k), for n = 100 and k ∈ {1, 100}; note
the unimodal character of this function

Note that the ordinate in this figure is in logarithmic coordinates.

We can represent k*, the number of partitions (firms) that

extremizes S(n, k) for fixed n (number of employees) as follows.

    

€ 

k * = arg max
k

S n,k( )[ ]
Unfortunately, we cannot explicitly compute it for n corresponding to the

number of workers in the U.S., for the quantities involved are simply too

vast. However it is known that k* is non-decreasing in n. It turns out that

there is an explicit formula for a tight bound on k* in the combinatorics

literature (Canfield and Pomerance 2002):

    

€ 

k * ∈ er −1 
  

 
  
, er −1
 
  

 
  

 
 
 

 
 
 

where r solves

  

€ 

rer = n

Evaluating this expression at n = 105 x 106, the total number of

employees in the U.S. in 1997, yields k* ~ 6,699,470, so the average firm

size, n/k* is 15.7. This is not too far from the empirical value of 19.0

Furthermore, over the past decade the average firm size has expanded

slightly as both the workforce and the number of firms have grown. Such

a trend is evident in this formalism as well, for as n increases the value

k* increases, albeit more slowly, and so n/k* increases as well. It would
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be interesting to know the distribution of block sizes at the optimal value

of k*, but apparently this is not well understood. For random integer

partitions (as opposed to set partitions) this is known (Vershik and

Yakubovich 2001) and is essentially exponential (Gibbsian).

2 Maximum Entropy Partitions

Aspects of this formalism are related to the following purely

statistical considerations. Define the fraction of all firms having size i as

pi. Now, extremize the so-called non-extensive entropy of the probability

distribution, i.e.,

    

€ 

Sq ∝

1− pi
q

i=1

k

∑

1− q
where c is a constant, such that

    

€ 

pi = 1
i=1

k

∑  and 
    

€ 

ipi = n
i=1

k

∑

The first constraint merely preserves probability and the second

constraint keeps the number of workers constant. It turns out that the

equilibrium firm size distribution is then

    

€ 

pi ∝ 1− 1− q( )i[ ]−1 1−q( )
.

For q = 2/3, 1/(1-q) = 2, and so the Zipf law is recovered. More work

needs to go into understanding the meaning of q and the economic

content, if any, of this formalism.

VI Summary and Conclusions

It has been argued that the facts on firm sizes are partially

understood through formulas, partially through fables of stochastic

growth, and possibly via the fantasy of randomly partitioning workers

into firms. Today there is a wealth of new firm data coming on-line, data

that should help substantially to restrict the class of industrial

organization theories to those that are empirically relevant.

While much progress has been achieved in better understanding



Firm Sizes: Facts to Fantasies                                                                Axtell

18

the firm size distribution and its implications for models, we have just

begun to scratch the surface of its ultimate policy relevance. High on the

policy agenda is to assault common conceptions of the ‘typical firm’ in

order to help decision-makers craft policy that helps the entire economy

and not just some particular slice of the overall firm size distribution.

Curiously, intra-country distributions of city sizes in modern

industrial nations appear to nearly coincide with the distribution of firm

sizes—see Gabaix (1999) for a recent analysis. This leads naturally to

questions as to whether the existence of one of these distributions

necessarily determines the other, or if they are jointly determined by

some third process. In recent work with Richard Florida we demonstrate

that skew firm sizes can generate skew city sizes.

While dual focus on small businesses and large industries may be

a good strategy, given the current state of understanding of business

dynamics, it is unlikely to be the optimal strategy in the long run. For the

growth of business firms seems to be largely and interestingly

independent of size, meaning that the intrinsic dynamics of firms are

really the result of accreting employees one at a time. When this process

is fully understood it will be meaningless to have either a Small Business

Administration or a Large Business Adminstration, just as it would make

little sense to have two Departments of Health and Human Services, one

for people who are shorter than average and one for people who are taller

than average. Rather, a deep understanding of business firms will surely

have as its cornerstone the notion that there are universal aspects to

firm growth, just as there are universal features in tree growth, across

species, regions, habitats and climates. No two trees are identical, as are

no two firms, but all trees use photosynthesis to turn sunlight into

biochemicals, just as all firms use technology to turn investment into

profits. Once the large-scale features of firm growth are more fully

understood we can begin unpacking the complex micro-machinery of

organizational form and function that makes firms alive.
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